desmos

Unit 8.1, Family Resource

Unit 1 Summary

Transformations

There are three types of rigid transformations: translations, rotations, and reflections.

To take the pre-image $A B C D$ to the image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, reflect the polygon over the y-axis and then translate 2 units down, or translate first and then reflect.

desmos

Unit 8.1, Family Resource
Defining Congruence

Definition	
One figure is congruent to another if	
it can be moved with translations,	
rotations, and reflections to fit	Congruent polygons have: exaracteristics engres over the other.

Triangle $E F D$ is congruent to triangle $A B C$ because you can reflect $A B C$ across a horizontal line and then translate to fit it on top of $E F D$.

Applying Congruence

We can use what we know about congruence and transformations to understand other relationships, particularly relationships between angles in triangles and on parallel lines.

Lines that cross parallel lines are called transversals.
We can translate and rotate the line $D E$ to see that both the angles marked x are congruent.

We can use this strategy to see that the sum of all of the angles in a triangle is equal to a half-circle or 180…

desmos

Unit 8.1, Family Resource

Try This at Home
 Transformations

1.1 Use the language of transformations (translation, rotation, reflection) to describe how the figure changes from one panel to the next.
1.2 Draw a fifth panel that shows the last figure rotated 180° counterclockwise around the middle of the panel.

Defining Congruence

2.1 Reflect triangle $A B C$ across line k to form a new triangle, $D E F$.
2.2 Is triangle $D E F$ congruent to triangle $A B C$? Explain your thinking.
2.3 What is the measure of angle D ?
2.4 Name at least one pair of sides that have the same length.

Applying Congruence

Here is a pair of parallel lines and a transversal.
3. Use what you know about angle relationships to determine the measurements of all of the other angles in the diagram.

desmos

Unit 8.1, Family Resource

Solutions:

1.1 Panel $1 \rightarrow 2$: Rotate 90° degrees clockwise around the center of the shape.

Panel $2 \rightarrow 3$: Translate to the right.
Panel $3 \rightarrow 4$: Reflect across a horizontal line in the middle of the panel.
1.2

2.1 See image on the right.
2.2 Yes.

Explanations vary. I created triangle $D E F$ using a rigid transformation (a reflection), so it must be congruent.
2.345 degrees
2.4 Pairs of sides that are the same length:

- $A B$ and $D E$

- $B C$ and $E F$
- $A C$ and $D F$

3. Use what you know about angle relationships to determine the measurements of all of the other angles in the diagram.

